
Citation: Matusse, C.; Lucamba, Z.;

Bila, J.; Macuamule, C.; Sampaio, A.;

Afonso, S.; Venâncio, A.; Rodrigues, P.

Aflatoxin Contamination of Various

Staple Foods from Angola and

Mozambique. Toxins 2024, 16, 516.

https://doi.org/10.3390/

toxins16120516

Received: 8 November 2024

Revised: 22 November 2024

Accepted: 27 November 2024

Published: 29 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Aflatoxin Contamination of Various Staple Foods from Angola
and Mozambique
Cláudio Matusse 1,2,3, Zelda Lucamba 4, João Bila 5,6 , Custódia Macuamule 7, Ana Sampaio 3,8,9 ,
Sandra Afonso 4,10, Armando Venâncio 11,12 and Paula Rodrigues 1,*

1 CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
matusseclaudio8@gmail.com

2 Department of Agriculture, College of Business and Entrepreneurship of Chibuto, UEM-Eduardo Mondlane
University, Gaza 1200, Mozambique

3 University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
asampaio@utad.pt

4 Instituto Superior Politécnico de Cuanza Sul, Rua 12 de Novembro, Sumbe, Cuanza Sul CP 82, Angola;
zeldalucambalucamba@gmail.com (Z.L.); sandra.afonso3@gmail.com (S.A.)

5 Department of Crop Protection, Faculty of Agronomy and Forestry Engineering, UEM-Eduardo Mondlane
University, Maputo 1102, Mozambique; jbilay@gmail.com

6 Centre of Excellence in Agri-Food Systems and Nutrition (CE-AFSN), UEM-Eduardo Mondlane University,
Maputo 1102, Mozambique

7 Department of Animal Production and Food Technology, Faculty of Veterinary, UEM-Eduardo Mondlane
University, Maputo 1102, Mozambique; custodiamacuamule@gmail.com

8 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University
of Trás-os-Montes and Alto Douro (UTAD) Quinta de Prados, 5000-801 Vila Real, Portugal

9 Laboratório Associado Instituto Para a Inovação, Capacitação e Sustentabilidade da Produção
Agroalimentar (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados,
5000-801 Vila Real, Portugal

10 Centro Nacional de Investigação Científica, Rua Avenida Ho Chi Minh, 201, Maianga, Luanda CP 34, Angola
11 CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;

avenan@deb.uminho.pt
12 LABBELS—Associate Laboratory, 4800-058 Guimarães, Portugal
* Correspondence: prodrigues@ipb.pt

Abstract: Aflatoxins constitute a significant risk in staple foods produced in African countries. This
research aimed to analyze the total aflatoxin (AFT) contamination of various staple foods in Angola
and Mozambique. A total of 233 samples of corn, peanuts, beans, rice, and cassava flour collected
from farmers or local markets from the province of Cuanza Sul, Angola, and the provinces of Gaza and
Inhambane, South Mozambique, were analyzed for the presence of AFT using the lateral flow strip
method via AgraStrip® Pro WATEX® (Romer). The results showed that, from all matrices, the highest
incidence and level of AFT were found in corn produced in Mozambique, with medians ranging from
6.5 to 66.5 µg/kg, with the samples showing values as high as 9200 µg/kg. Levels higher than the
maximum admissible levels recommended by the Codex Alimentarius Commission for cereals and
pulses (15 µg/kg) were observed in up to 90% of the corn samples, depending on the province. Corn
produced in Angola showed lower amounts of AFT, with medians ranging from 1.2 to 7.7 µg/kg.
Considering the maximum admissible levels for AFT recommended by the European Commission
and the Codex Alimentarius Commission for cereals and pulses, the level of AFT contamination in
staple food produced and consumed in the studied provinces is high and constitutes a public health
risk for the population. Therefore, risk mitigation strategies are urgently needed.

Keywords: toxicity; mycotoxins; food security; quality control; Africa

Key Contribution: Our results showed a high level of AFT contamination in Mozambique and
Angola’s main staple foods. Mycotoxin occurrence data from Mozambique are scarce, while for
Angola, this is the first report on AF occurrence.
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1. Introduction

Aflatoxins (AFs) are considered the most harmful mycotoxins [1], and aflatoxin B1
(AFB1) in particular has been classified into Group 1 “carcinogenic to humans” by the
International Agency for Research on Cancer [2]. Acute exposure to high doses can cause
vomiting and abdominal pain, and, in extreme situations, it can be lethal, while chronic
exposure at lower doses is associated with liver cancer [3]. Aflatoxins are among the
most common mycotoxins in agriculturally important food crops worldwide. They thus
constitute a major risk to human and animal health.

Aflatoxins contaminate many agricultural products, which are particularly susceptible
to being infested by aflatoxigenic fungi [4]. Corn, peanuts, rice, sorghum, and wheat are
each responsible for more than 10% of the global exposure to AFs [5]. Poor hygiene during
transport and storage, high temperatures and relative humidity, and heavy rainfall are all
conditions that favor fungal growth and potentiate AF production [6]. The populations in
any region or country where these conditions are found are more susceptible to mycotoxin
exposure. In general, these regions also face higher malnutrition and food insecurity
problems, and there are few regulatory instruments that can protect the exposed and
vulnerable populations.

African countries, particularly those belonging to the Southern African Development
Community (SADC), are considered highly vulnerable to AF exposure. In such countries,
corn and peanuts are base staple crops for most of the population and constitute the major
source of AF intake for these populations. Despite this predicted high susceptibility, only
a few countries in this region, as is the case for South Africa and Tanzania, have been
subject to considerable research on AF incidence in their agricultural products, and the
characterization of AF exposure in other countries in this region is scarce.

Angola and Mozambique are SADC countries with little or no knowledge of their
staple foods’ AF incidence and contamination levels. Only a few reports are available from
Mozambique, and, to our knowledge, none are available from Angola. In Mozambique, AF
contamination has been reported for corn [7–10], peanuts [8,11,12], and cashew nuts [13].

The maximum tolerable limit (MTL) of AFs regulated by the European Union (MTL-
EU) in peanuts and other oilseeds used as the only ingredient; products processed from
peanuts; cereals; and products derived from cereals is very low: 4 µg/kg [14]. The AF MTL
stipulated by the Food and Agriculture Organization (FAO) and Codex Alimentarius (MTL-
Codex) for African countries is, on the other hand, less stringent: 10 µg/kg for peanuts,
beans, cassava, and rice, and 15 µg/kg for corn [15]. In Mozambique, MTLs are established
for peanuts only, at 10 µg/kg, and Angola has no established MTLs [15]. African countries
have the sovereignty and right to apply the codex regulations for quality control and food
safety (specifically mycotoxins). Still, exportation to Europe requires adopting European
legislation, which can generate solid commercial constraints. Narayan et al. [16] reported
that in Tanzania and Nigeria, two countries highly affected by AF contamination [17], this
was not a critical factor in peanuts and corn exports since the high domestic demand for
these products resulted in negligible amounts being released for exportation. The same
occurs in Angola and Mozambique, particularly in rural areas, where the trade of these
staples is residual and they are mainly produced for family consumption or local trade.
This contributes to the domestic consumption of highly contaminated products, making
these populations even more susceptible to high AF intake.

Agriculture is a fundamental activity affecting most families in both Angola and
Mozambique. Family farms constitute around 98% of all farms, and 60 to 75% of the
population depends on agriculture for survival [18,19]. It is estimated that there are
2.3 million and 4.2 million family farms in Angola and Mozambique, respectively [18,19].
Staple foods like corn, peanuts, rice, cassava, and beans are not only the basis of family
nutrition in these countries; they are also sources of economic income, mainly resulting
from local formal or informal trade. In Angola, the province of Cuanza Sul has the third-
largest farming area and the third-highest number of farms in the country, and 97% of
the families depend on agriculture [19]. In this province, the most significant crops are
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corn, produced on 95% of the farms, cassava (57%), and beans (56%), followed by peanuts
(36%) [19]. In Mozambique, a significant number of farms produce corn (83.8%), peanuts
(23.6%), and rice (12.8%) [18], and the south provinces of Gaza and Inhambane also depend
on these staples. Gaza is the country’s third largest producer of corn and rice, while the
province of Inhambane is a significant peanuts producer.

Despite the importance of agricultural production, Mozambique suffers from one of
the highest malnutrition rates in the world, especially in rural areas [20]. In 2019, almost 30%
of the families faced acute food insecurity; in comparison, 16% was reported in 2016 [21].
In 2019, the provinces of Gaza and Inhambane registered the highest levels of acute food
insecurity in the country, with 48% and 40% of families facing this problem, numbers that
can be compared against the values of 39% and 20% registered in 2016 [21]. In Angola, the
level of food insecurity is also alarming, and malnutrition is a public health issue affecting
almost half of the population, with around 1.58 million people suffering from acute severe
food insecurity [22].

Post-harvest food losses, including those resulting from fungal growth and mycotoxin
accumulation, are among the most important causes of food insecurity and malnutrition in
these countries [23]. MADER [18] estimates that corn losses in the provinces of Maputo and
Inhambane, Mozambique, reach as high as 29.4% and 26% of the production, respectively,
thus strongly contributing to food supply shortages. Also, AF exposure among young
children is correlated with impaired growth and stunting [3] and strongly correlated with
hepatocellular cancer [24]. The adoption of strategies for mitigating AF contamination in
food is thus fundamental for food security, public health, and commercial reasons and will
aid in reducing extreme food insecurity situations.

This study aimed to analyze the total AF contamination levels of various staple foods
produced by small-scale and subsistence farmers in rural settings of the province of Cuanza
Sul, Angola, and the provinces of Gaza and Inhambane, South Mozambique, to understand
the extent to which AFs pose a risk in these two countries. To the best of the authors’
knowledge, this is the first report on AF contamination of foods from Angola.

2. Results

This work looked at the incidence of total aflatoxin (AFT) contamination in various
staple foods—corn, peanuts, beans, rice and cassava flour—produced in the province of
Cuanza Sul (five districts), Angola, and in the provinces of Gaza (three districts) and Inham-
bane (three districts), South Mozambique. The overall occurrence and average, median,
and range (min and max) levels of AFT are reported in Table 1. Table 2 provides a detailed
description of the incidence and levels of AFT contamination by country, province, district,
and product, as well as the percentage of samples exceeding the maximum tolerable limits
set by the European Union (MTL-EU) and the Codex Alimentarius (MTL-Codex). Figure 1
reports the distribution of samples (in percentages) according to class of contamination.

Table 1. Overall results for total aflatoxin contamination of samples from Angola and Mozambique,
arranged by product.

N Positives
(%)

Average of All
Samples (µg/kg)

Median
(µg/kg)

Range
(µg/kg)

Corn
Mozambique 30 100 1107.6 26.9 <LOQ—9200
Angola 48 96 5.1 1.7 <LOD—82.3
Total 78 97 429.1 2.0 <LOD—9200
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Table 1. Cont.

N Positives
(%)

Average of All
Samples (µg/kg)

Median
(µg/kg)

Range
(µg/kg)

Peanuts
Mozambique 50 36 40.6 <LOD <LOD—496
Angola 15 47 8.3 <LOD <LOD—52.3
Total 65 39 33.2 <LOD <LOD—496

Cassava
Mozambique 30 37 1.5 <LOD <LOD—9.6
Angola 10 0 <LOD - <LOD
Total 40 28 1.3 <LOD <LOD—9.6

Beans
Mozambique - - - - -
Angola 20 25 <LOD <LOD <LOD—2.9
Total 20 40 <LOD <LOD <LOD—2.9

Rice
Mozambique 30 70 23.1 1.8 <LOD—380
Angola - - - - -
Total 30 70 23.1 1.8 <LOD—380

All samples
Mozambique 140 57 257.1 1.7 <LOD—9200
Angola 93 62 4.3 1.3 <LOD—82.3
Total 233 59 156.2 1.5 <LOD—9200
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Table 2. Detailed description of the incidence and levels of total aflatoxin contamination in Angola and Mozambique according to country, province, district, and
product. Colors represent the level of contamination, ranging from lowest (green) to highest (red).

Country Province District Product
Total

Samples
(n)

Positive
Samples

(n)

Positive
Samples

(%)

Average
of All

Samples
(µg/kg)

Average
of

Positive
Samples
(µg/kg)

Median
of All

Samples
(µg/kg)

Median
of

Positives
Samples
(µg/kg)

Min
(µg/kg)

Max
(µg/kg)

Samples
> MTL
Codex

(%)

Samples
> MTL
EU (%)

Angola Cuanza Sul Cassongue Corn 10 9 90 1.5 1.6 1.7 1.7 1.0 1.9 0.0 0.0

Peanuts 5 3 60 1.3 1.3 1.2 1.2 1.0 1.8 0.0 0.0

Ebo Corn 10 9 90 1.5 1.5 1.5 1.5 1.0 2.0 0.0 0.0

Quibala Corn 10 10 100 1.5 1.5 1.5 1.5 1.0 2.0 0.0 0.0

Seles Corn 8 8 100 1.9 1.9 2.0 2.0 1.3 2.4 0.0 0.0

Sumbe Corn 10 10 100 18.6 18.6 7.7 7.7 1.4 82.3 50.0 60.0

Beans 20 5 25 1.0 2.3 0.5 1.9 1.6 2.9 0.0 0.0

Cassava flour 10 0 0 <LOD <LOD <LOD <LOD <LOD <LOD 0.0 0.0

Peanuts 10 4 40 11.7 28.2 0.8 29.2 2.2 52.3 20.0 30.0

Mozambique Gaza Chokwe Corn 10 10 100 1972.6 1972.6 66.5 66.5 1.3 9200.0 80.0 80.0

Rice 10 9 90 4.9 5.3 2.1 2.2 1.0 25.2 10.0 10.0

Manjacaze Corn 10 10 100 369.2 369.2 40.0 40.0 4.8 1950.0 90.0 100.0

Peanuts 10 2 20 5.8 26.0 0.8 26.0 10.6 41.3 20.0 20.0

Rice 10 9 90 63.1 70.0 17.3 23.7 1.4 380.0 60.0 60.0

Chongoene Corn 10 10 100 981.1 981.1 5.8 5.8 2.4 8736.0 30.0 90.0

Peanuts 10 5 50 5.6 10.5 1.3 2.3 1.8 43.6 10.0 10.0

Rice 10 3 30 1.2 2.9 0.5 1.7 1.1 6.0 10.0 10.0

Inhambane Jangamo Peanuts 10 4 40 95.5 237.6 0.8 235.5 12.6 467.0 40.0 40.0

Cassava flour 10 2 20 0.9 1.7 0.8 1.7 1.6 1.7 0.0 0.0

Inharrime Peanuts 10 2 20 4.8 20.9 0.8 20.9 12.6 29.1 20.0 20.0

Cassava flour 10 2 20 1.0 2.1 0.8 2.1 1.8 2.3 0.0 0.0

Massinga Peanuts 10 5 50 91.4 182.1 2.1 173.0 3.5 496.0 40.0 40.0

Cassava flour 10 7 70 2.6 3.3 2.2 2.5 1.7 9.6 0.0 10.0
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Overall, the results show that AFTs were detected in all the analyzed crops, except
cassava from Angola, where no contamination was detected (Table 1). Disregarding
the origin of the samples, corn was the crop with the highest incidence and level of
contamination, followed by peanuts and rice. Beans and cassava flour were the least
contaminated products.

2.1. Incidence of Total Aflatoxins in Angola

In Angola, AFT contamination was noted in all the matrices studied except cassava
flour (Table 1; Figure 1), with 58 out of the total 93 samples (62%) showing detectable AFs.
However, only corn and peanuts showed levels of contamination above those permitted
by the European Union (MTL-EU) and the Codex (MTL-Codex) (Table 2). While corn
showed a higher incidence than peanuts (96% and 47%, respectively), peanuts showed
a higher average of contamination (8.3 µg/kg against 5.1 µg/kg) (Table 1; Figure 2) and
a higher percentage of samples exceeding the MTLs (Table 2). The incidence of AFTs in
corn produced in Angola was very high and ranged from 90% to 100% in the positive
(>LOD) samples.

Toxins 2024, 16, x FOR PEER REVIEW 6 of 17 
 

 

2.1. Incidence of Total Aflatoxins in Angola 
In Angola, AFT contamination was noted in all the matrices studied except cassava 

flour (Table 1; Figure 1), with 58 out of the total 93 samples (62%) showing detectable AFs. 
However, only corn and peanuts showed levels of contamination above those permitted 
by the European Union (MTL-EU) and the Codex (MTL-Codex) (Table 2). While corn 
showed a higher incidence than peanuts (96% and 47%, respectively), peanuts showed a 
higher average of contamination (8.3 µg/kg against 5.1 µg/kg) (Table 1; Figure 2) and a 
higher percentage of samples exceeding the MTLs (Table 2). The incidence of AFTs in corn 
produced in Angola was very high and ranged from 90% to 100% in the positive (>LOD) 
samples. 

 
Figure 2. Boxplot of the average total aflatoxin concentration (1 + log10 µg/kg) in various Angolan 
staple foods. The bars represent the minimum and maximum intervals; different letters highlight 
significant differences (p < 0.05) between the matrices according to the Kruskal–Wallis test, followed 
by Dunn’s multiple comparison. 

The district of Sumbe showed the highest AFT levels, with 60% and 50% of the corn 
samples collected there exceeding the MTL-EU (4 µg/kg) and the MTL-Codex (15 µg/kg) 
levels, respectively, with a maximum amount of 82.3 µg/kg (Table 2; Figure 1). AFT levels 
of corn in this district were significantly higher than in the remaining districts (p < 0.046), 
where the maximum levels ranged from 1.9 to 2.4 µg/kg (Figure 3) and none of the 
samples exceeded the MTLs. Also, in the district of Sumbe, peanuts samples exceeded the 
MTL-EU (4 µg/kg) and MTL-Codex (10 µg/kg) levels by around 30% and 20%, 
respectively, with the maximum level of AFs being 52.3 µg/kg (Table 2; Figure 3). The 
highest levels of contamination in the district of Sumbe may result from the samples 
having been collected from local markets, without knowledge of the time and conditions 
of storage of the products. For the remaining districts, samples were collected from the 
producers, either from a field or storage house. Beans and cassava flour were the least 
contaminated products in the province in terms of AF incidence and concentration. None 
of the samples reached the MTLs. 

Bea
ns

Cas
sa

va
 flo

ur
Corn

Pea
nuts

0.0

0.5

1.0

1.5

2.0

2.5

a b
a

b
b

Figure 2. Boxplot of the average total aflatoxin concentration (1 + log10 µg/kg) in various Angolan
staple foods. The bars represent the minimum and maximum intervals; different letters highlight
significant differences (p < 0.05) between the matrices according to the Kruskal–Wallis test, followed
by Dunn’s multiple comparison.

The district of Sumbe showed the highest AFT levels, with 60% and 50% of the corn
samples collected there exceeding the MTL-EU (4 µg/kg) and the MTL-Codex (15 µg/kg)
levels, respectively, with a maximum amount of 82.3 µg/kg (Table 2; Figure 1). AFT levels
of corn in this district were significantly higher than in the remaining districts (p < 0.046),
where the maximum levels ranged from 1.9 to 2.4 µg/kg (Figure 3) and none of the samples
exceeded the MTLs. Also, in the district of Sumbe, peanuts samples exceeded the MTL-EU
(4 µg/kg) and MTL-Codex (10 µg/kg) levels by around 30% and 20%, respectively, with
the maximum level of AFs being 52.3 µg/kg (Table 2; Figure 3). The highest levels of
contamination in the district of Sumbe may result from the samples having been collected
from local markets, without knowledge of the time and conditions of storage of the products.
For the remaining districts, samples were collected from the producers, either from a
field or storage house. Beans and cassava flour were the least contaminated products in
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the province in terms of AF incidence and concentration. None of the samples reached
the MTLs.
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Figure 3. Boxplots of the average total aflatoxin concentrations (1 + log10 µg/kg) in Angola for
corn (five districts, Kruskal–Wallis test, followed by Dunn’s multiple comparison) and peanuts
(two districts, Mann–Whitney U test). The bars represent the minimum and maximum intervals;
different letters highlight significant differences (p < 0.05) between the districts for corn and peanuts.

2.2. Incidence of Total Aflatoxins in Mozambique

In Mozambique, AFTs were detected in all the matrices studied. Corn and rice had
the highest incidences (Table 1; Figure 1)—100% and 70%, respectively. Corn showed
significantly higher contamination than the other crops analyzed (Figure 4). Cassava
showed the lowest incidence and AFT levels, and no samples exceeded the MTLs (Table 2).
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In Mozambique, rice and corn were only collected in Gaza Province since these crops
are not significant in the province of Inhambane. On the other hand, cassava flour was only
sampled from Inhambane. Among the sampled products, only peanuts were collected from
both provinces. The incidence of Afs in corn produced in Mozambique reached 100% in
the three districts of Gaza province (Table 2). Because of the high variance, the differences
between districts were not statistically significant (p > 0.05), but Chokwe district showed
the highest average (1972.6 µg/kg) and median (66.5 µg/kg), with two samples reaching
AFT contamination levels as high as 9200 µg/kg (Table 2; Figure 5).
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Figure 5. Average total aflatoxin concentrations (µg/kg) in various staple foods of Mozambique
in the six districts (top: province of Gaza; bottom: province of Inhambane). Error bars represent
the minimum and maximum intervals. Different letters highlight statistical differences (p < 0.05)
between districts (determined via Kruskal–Wallis test, followed by Dunn’s multiple comparison, for
all matrices except for peanuts in Gaza, where the Mann–Whitney U test was applied).

In the districts of Chokwe and Manjacaze, more than 80% of the corn samples exceeded
the MTL-EU (4 µg/kg) and MTL-Codex (15 µg/kg) levels (Table 2). Concerning rice, the
highest incidence was observed in the district of Manjacaze, Gaza Province, with a positive
rate of 90% and 60% exceeding the MTL. Manjacaze samples were significantly (p < 0.05)
more contaminated than those from Chongoene and Chokwe (Figure 5). Peanuts had the
highest incidence (50%) and median (2.2 µg/kg) in the district of Massinga, Inhambane
Province, with the highest absolute level being 496 µg/kg (Table 2). Nonetheless, there were
no significant differences between districts. Cassava flour (locally named rali) was the least
contaminated product sampled in the country. It had the highest incidence in the district of
Massinga, Inhambane Province, with a positive rate of around 70% but only one sample
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exceeding the MTLs (Table 2). The level of contamination in cassava flour from Massinga
was statistically higher (p < 0.05) than that from Jangamo and Inharrime (Figure 5).

2.3. Comparison of Crops Between Angola and Mozambique

All crops sampled from both countries—corn, peanuts, and cassava—showed higher
contamination in Mozambique than in Angola (p < 0.0071). Corn and cassava from Mozam-
bique stood out in terms of contamination compared to Angola (p < 0.001 and p = 0.028,
respectively), while for peanuts, there were no significant differences (p = 0.677) (Figure 6).
For corn, it is noticeable that the risk was much higher in Mozambique.
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Figure 6. Comparative analysis of the average total aflatoxin concentrations (1 + log10 µg/kg) in
common staple foods from Angola (“staple”_A) and Mozambique (“staple”_M). Error bars represent
minimum and maximum values, and different letters highlight statistical differences (p < 0.05)
between the same staple for both countries (Mann–Whitney U test).

3. Discussion

Due to climate vulnerability, Mozambique is considered one of the countries most
affected by AF [25]. However, few studies have analyzed AF contamination in Mozambican
food products [7–13]. Furthermore, to the best of our knowledge, this is the first study on
AF contamination in food staples produced in Angola.

This study found a high level of AFT contamination in corn produced in Mozambique
and Angola, with AFT values from Mozambique reaching 9200 µg/kg in two samples and
one reaching 8736 µg/kg, while in Angola, the highest detected value was 82.3 µg/kg. Corn
is one of the world’s most important food staples, and in both Angola and Mozambique,
it is the agricultural product with the highest dietary and economic relevance. Because
of its importance and particular susceptibility, corn is also one of the most studied food
crops for AF contamination [17]. In general, in the various products analyzed in many
African countries, AFB1 contamination levels are relatively high. In a systematic review,
Meijer et al. [17] found that among the 27 analyzed studies, 25 indicated a mean AFB1 level
in corn of > 5 µg/kg. El-Shanshoury et al. [26] reported a mean AFB1 concentration of
440 µg/kg in corn from Egypt, and individual samples with values as high as 6738 µg/kg
(AFB1) (from Nigeria) [27], 9091.8 µg/kg (AFB1) (from Kenya) [28], 3760 µg/kg (AFT) (from
Uganda) [29], and up to 2806.5 µg/kg (AFT) (from the Democratic Republic of Congo) [30]
have been reported. Few studies have reported low mean AF concentrations. Martinho
et al. [10] investigated 30 samples of corn flour collected at milling factories in Nampula,
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Mozambique, and detected AFT in very low concentrations: an average of 0.89 µg/kg, and
a maximum level of 1.05 µg/kg.

Climate remains one of the main driving factors of mycotoxin production in foods
from Sub-Saharan Africa [31]. Nonetheless, post-harvest factors strongly influence AF
accumulation in corn due to the characteristics of the AF-producing fungi. Corn produced
by subsistence farmers is considered to be at a higher risk of contamination due to particu-
larly poor drying and storage conditions [32]. In Angola and Mozambique, the common
post-harvest drying and storage methods include no or residual sorting of moldy grains,
long drying periods at high temperatures and under high humidity, and unhygienic storage
conditions, with access of rodents and insects to the storage facilities. It is recommended
that corn should be under conditions with less than 15% humidity within 10 days of har-
vesting to avoid contamination by aflatoxins [33]. Given the climate conditions, this is not
always achieved, and many more days of high humidity and rain can pass until the corn is
properly dried, and it is often stored before being properly dried. Hermetic technologies
are recommended for storage [34], but this technology is seldom available to subsistence
farmers. While it is difficult for these farmers to address climate conditions, drying and
storage can be adjusted if farmers are properly supported with materials and training [31].

The incidence and levels of AFT detected in this study in peanuts from Angola and
Mozambique were also high but significantly lower than those for corn, and few samples
exceeded the international MTLs. The maximum values found were 496 µg/kg in one
sample from Mozambique and 52.3 µg/kg in one sample from Angola. Previous studies
have reported contamination of Mozambican peanuts with AFT. A study of 23 samples
from local markets in the province of Nampula, in the north of the country, found median
levels of AFT of 3.4 µg/kg, within the range of 3.4−123 µg/kg [8]. In 2018, 57 market and
supermarket samples of raw peanuts from Maputo, the capital of Mozambique, were found
to have AFB1, with average values of 2.71 µg/kg and a maximum of 72.93 µg/kg [35]. Bila
et al. [12] tested 47 samples of peanuts from the provinces of Gaza and Inhambane and
found AFT contamination in 83%, with averages ranging from 1.43 to 10.85 µg/kg and a
maximum value of 17.42 µg/kg. In a neighboring country, Tanzania, AF contamination
in peanuts is also widespread, and 96.1% of the 180 samples analyzed by Boni et al. [36]
were contaminated, with AFT values up to 10.93 µg/kg. In the Democratic Republic of
Congo, the occurrence and levels of AF, mainly AFB1, in raw peanuts were significantly
higher, with values up to 937 µg/kg, and tended to increase from the dry season to the
rainy season [37]. The lack of detailed scientific knowledge on the extent of the AF problem
in peanuts and the associated health risks is still a challenge for Mozambique and Angola.
Ours is not an isolated case; in many countries, there are still gaps in knowledge or evidence
regarding AF in peanuts and peanuts products, and, therefore, there is a need to promote
more research to fill these gaps [38].

Considering cassava flour, our samples’ contamination levels were low or even unde-
tectable. While no samples from Angola showed contamination, 11 out of 30 samples (37%)
from Mozambique showed AFT contamination with average values of 2.8 µg/kg, and only
one exceeded the MTL-EU. Fresh cassava is not usually associated with AF contamination,
even when aflatoxigenic fungi are present, due to anti-aflatoxigenic compounds [37], but
inadequate drying, processing, and storage conditions might result in the loss of these prop-
erties and favor the development of aflatoxigenic fungi [39,40]. Many studies from Nigeria,
Malawi, Zambia, Benin, Uganda, and Tanzania have shown little or no AF contamination
in processed cassava products [39,41–46], while others from the Republic of Congo and
Benin found incidences as high as 100%, with values up to 9 µg/kg [47,48]. In Cameroon,
Essono et al. [49] evaluated 72 samples of cassava chips over two months of storage. Of the
total, 18 samples showed AF contamination with a variation between 5.2 and 14.5 µg/kg,
but only after four weeks of storage. In Tanzania and the Republic of Congo, Manjula
et al. [48] reported AFB1 contamination levels from 0.3 to 4.4µg/kg in cassava chips and
flour, and from 0.1 to 13.0µg/kg in stored cassava samples, with relatively high levels of
contamination found in cassava stored for 4 months.
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The rice produced and consumed in Mozambique (mainly in Manjacaze) is contami-
nated with AFT at levels that exceed the limits tolerated by European Union legislation
and the Codex Alimentarius. Although high variability in AF contamination in rice has
been observed worldwide, the highest contamination levels have been reported in devel-
oping countries, mainly those in Asia [50]. Few studies report on the presence of AFs in
rice produced in Sub-Saharan Africa. In Nigeria, two studies reported that 100% of the
analyzed rice samples were deemed unsafe (all exceeded the MTLs), with AF values within
the ranges of 37–112 µg/kg [51] and 28–372 µg/kg [52].

Aflatoxin contamination in beans in Angola was not significant in this study and did
not exceed the limits set by the European Union or Codex Alimentarius, although there
was an around 40% positivity rate. Beans have not been vigorously studied in terms of
AF contamination, and contradictory results have been reported. A study from Nigeria
reported a 58% incidence of AF in beans, with mean values as high as 63–106 µg/kg [53]. On
the contrary, another study from Nigeria reported that among 15 samples of bean flour sold
commercially, 9 were contaminated with AFs but at residual levels below 0.151 µg/kg [54].

Our results show a high level of AFT in Mozambique and Angola’s main matrices
considered staple foods. While cassava and beans seem less affected by AF contamination,
there is an urgent need to adopt mitigation strategies to minimize AF contamination in
corn, peanuts, and rice because these are fundamental staples in Africa in terms of its food
and agricultural economy.

Aflatoxins affect several countries in the world and the SADC region, and their high
incidence in southern African countries constitutes a considerable concern for food security
in the region. The SADC’s vulnerability to climate change is not caused by climate change
alone; it is a combination of social, economic, and other environmental factors that interact
with climate change [31,32,55]. The situation in Angola and Mozambique is like that in other
countries with a tropical climate and that are just as vulnerable to climate change [56]. The
hot and humid climates in tropical and subtropical regions are favorable for the growth of
aflatoxigenic fungi, and these conditions lead to the prevalence of AF in many agricultural
products [4,57].

Considering the maximum admissible levels for AFT recommended by the European
Commission and the Codex Alimentarius Commission for cereals and pulses, the levels of
AFT contamination in staple foods produced and consumed in Angola (Cuanza Sul) and
Mozambique (southern) are high and constitute a public health risk for the population.
Thus, urgent mitigation measures are required to guarantee food safety for the population.

4. Materials and Methods
4.1. Study Site

Samples of locally produced staples were collected from local markets in Angola and
in Mozambique in June–August 2022. In Angola, samples were collected in five districts
of the province of Cuanza Sul—Cassongue, Quibala, Ebo, Seles, and Sumbe (Figure 7). In
Mozambique, samples were collected from three districts of the province of Gaza—Chókwè,
Manjacaze (also known as Mandlakazi), and Chongoene (previously the district of Xai-
Xai)—and from three districts of the province of Inhambane—Jangamo, Inharrime, and
Massinga (Figure 8).

4.2. Sampling

The most significant staples from each region were selected for sample collection
based on consumption questionnaires administered to families and production question-
naires administered to farmers of the sampled districts/municipalities (data not published)
and from published reports from both countries, namely, the Integrated Agrarian Report
2020 [18] from Mozambique and the Agro-Livestock and Fisheries Census 2022 (Recensea-
mento Agro-Pecuário e Pescas [19]) from Angola. Based on these supporting reports, corn,
peanuts, and rice were selected as the most significant staples from the studied provinces
of Mozambique with different regional distributions. As reported by MADER [18] for
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the year 2020, the most significant cereals produced in the province of Gaza were corn
(64,763 t) and rice (17,757 t), while Inhambane produced mainly corn (15,885 t). No rice
production was reported in Inhambane in 2020. Peanuts were also an important staple in
both provinces (4773 t in Gaza and 5493 t in Inhambane). Even though the two selected
provinces are not the major staple producers in this country, they are of great interest
for this study since (i) they are mostly represented by small to medium-sized farms; (ii)
farmers here show the lowest school education and agrarian training levels in the country;
(iii) most of the produced staples are for family consumption, since only small portions of
the produced goods are sold, namely, 1.2% (Gaza) to 7.0% (Inhambane) of corn (country
average: 18%), 10% (Gaza) of the rice (country average 16%), and 0.2% (Gaza) to 0.3%
(Inhambane) of the peanuts (country average 20%); (iv) post-harvest losses are among the
highest in the country for corn—13.8% in Gaza and 26% in Inhambane (country average
13.5%) and 29% for peanuts in both provinces (country average: 24.5%) [18]. Among the
various staple foods in Angola, corn, cassava, beans, and peanuts were selected according
to their importance in the country. Corn is the most important product in Cuanza Sul and is
grown by 95% of farmers, while cassava is grown by 57%, butter beans are grown by 56%,
and peanuts are grown by 36% [19].

A total of 233 samples were collected from the two countries (140 from Mozambique
and 93 from Angola), as described in Figures 7 and 8. Approximately 1 kg of each sam-
ple was bought from the sellers (via local markets) or producers (via fields or storage
houses) and transported in paper bags to the Microbiology Laboratory of Instituto Superior
Politécnico de Cuanza Sul, in the case of Angola, and the Xai-Xai Water and Food Labo-
ratory, in the case of Mozambique. A representative 200 g subsample was conditioned in
paper bags and transported to the Mycology Laboratory of the Centro de Investigação de
Montanha, Bragança, Portugal, for analysis.
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4.3. Aflatoxins Analysis

One hundred grams of each sample was homogenized and ground to a fine flour using
a Vevor grinder (model XZ-68, Shanghai, China). Total aflatoxins were analyzed using the
lateral flow AgraStrip Pro WATEX® (Romer Labs, Tulln, Austria) validated procedures for
each matrix, as described by the manufacturer [58].

Briefly, 10 g ± 0.1 g of ground sample, one buffer bag, and 50 mL of deionized water
were added to a Whirl-Pak® filter bag (1:5 (w/v) extraction ratio). The mixture was shaken
vigorously for 2 min and then allowed to settle for 1 min. The supernatant (100 µL) was
transferred into a microcentrifuge tube and mixed with the appropriate volume of dilution
buffer, depending on the matrix (as set in the validation procedure for each matrix). The
diluted sample was centrifuged at 2000× g for 30 s, and 200 µL of the sample extract
was pipetted into the cartridge. All buffers, bags, microcentrifuge tubes, pipette tips, and
cartridges were provided in the kit.

The limit of detection (LOD), the limit of quantification (LOQ), and the upper detection
limit (UDL) are shown in Table 3. Quantification was performed using the AgraVision™
Pro Reader (Romer Labs, Tulln, Austria). Whenever necessary, sample extracts were diluted
with the kit’s diluent, and the analysis was repeated.

Table 3. Limit of detection (LOD), limit of quantification (LOQ), and upper detection limit (UDL)
(in µg/kg) for the method used for total aflatoxin analysis.

Matrix LOD LOQ UDL

Beans 1.0 1.5 50
Cassava flour 1.5 2.6 10

Corn 1.0 1.5 50 or 100
Peanuts 1.5 2.5 50

Rice 1.0 2.0 50
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4.4. Statistical Analysis

For the quantitative analysis of the data (conducted to calculate the average and the
median), since the LOD and LOQ were available, for results lower than the LOD, the value
LOD/2 was used, and for those between the LOD and the LOQ, the obtained LOQ value
was used, as recommended by [59].

AFT values were log-transformed [y = log10 (1 + AFT), µg/kg] to normalize vari-
ances. The variances of the means of the mycotoxins among countries, districts, and crops
were compared using non-parametric Kruskal–Wallis one-way ANOVA (95% confidence
interval), followed by Dunn’s multiple comparisons test (for 3 or more comparisons) or
the Mann–Whitney U test (for 2 comparisons), using GraphPad Prism version 10.4. The
Kruskal–Wallis test was used because the data did not meet the assumptions of normality and
homogeneity required by the Analysis of Variance F-test. StatSoft Inc. STATISTICA version 12
www.statsoft.com (accessed on 15 September 2024) was used for statistical analyses.
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